Statistical Foundation
Computational Efficiency
Data Requirements
Parameter | Type | Default | Description |
---|---|---|---|
fit_intercept | Boolean | True | Whether to calculate the intercept for this model |
normalize | Boolean | False | Normalizes features before regression |
Welcome to the ML Clever model training portal—your one-stop solution to build robust regression and classification models without writing any code. Whether you prefer fine-tuning parameters manually or leveraging our intelligent AutoML engine, this guide will help you turn your preprocessed data into high-performance models.
Powerful predictive modeling algorithms for your no-code machine learning applications. Select from industry-standard regression techniques with optimal configurations.
Our no-code platform leverages the power of scikit-learn, TensorFlow, and PyTorch to provide state-of-the-art predictive modeling capabilities with minimal setup. Each model is carefully documented with implementation guidance, parameter configurations, and performance characteristics to help you choose the right tool for your analytical needs without writing a single line of code.
Parameter | Type | Default | Description |
---|---|---|---|
fit_intercept | Boolean | True | Whether to calculate the intercept for this model |
normalize | Boolean | False | Normalizes features before regression |
Parameter | Type | Default | Description |
---|---|---|---|
n_estimators | Integer | 100 | Number of trees in the forest |
max_depth | Integer | None | Maximum depth of each tree |
min_samples_split | Integer | 2 | Minimum samples required to split a node |
Parameter | Type | Default | Description |
---|---|---|---|
alpha | Float | 1.0 | Regularization strength |
solver | String | 'auto' | Solver algorithm to use |
Parameter | Type | Default | Description |
---|---|---|---|
iterations | Integer | 1000 | Maximum number of trees to build |
learning_rate | Float | 0.1 | Step size shrinkage used to prevent overfitting |
depth | Integer | 6 | Depth of the trees |
Parameter | Type | Default | Description |
---|---|---|---|
n_estimators | Integer | 100 | Number of boosting iterations |
learning_rate | Float | 0.1 | Controls how much each tree contributes to the final outcome |
max_depth | Integer | -1 | Maximum tree depth, -1 means no limit |
num_leaves | Integer | 31 | Maximum number of leaves in one tree |
Parameter | Type | Default | Description |
---|---|---|---|
n_estimators | Integer | 100 | Number of gradient boosted trees |
learning_rate | Float | 0.1 | Step size shrinkage used to prevent overfitting |
max_depth | Integer | 6 | Maximum depth of a tree |
subsample | Float | 1.0 | Subsample ratio of training instances |
Parameter | Type | Default | Description |
---|---|---|---|
alpha | Float | 1.0 | Constant that multiplies the L1 term, controlling regularization strength |
max_iter | Integer | 1000 | Maximum number of iterations |
selection | String | 'cyclic' | If 'random', a random coefficient is updated every iteration |
Parameter | Type | Default | Description |
---|---|---|---|
alpha | Float | 1.0 | Constant that multiplies the penalty terms |
l1_ratio | Float | 0.5 | The mixing parameter, with 0 <= l1_ratio <= 1 |
max_iter | Integer | 1000 | Maximum number of iterations |
Parameter | Type | Default | Description |
---|---|---|---|
n_neighbors | Integer | 5 | Number of neighbors to use for prediction |
weights | String | 'uniform' | Weight function used in prediction |
algorithm | String | 'auto' | Algorithm used to compute nearest neighbors |
Parameter | Type | Default | Description |
---|---|---|---|
kernel | String | 'rbf' | Specifies the kernel type to be used in the algorithm |
C | Float | 1.0 | Regularization parameter |
epsilon | Float | 0.1 | Epsilon in the epsilon-SVR model, specifies the epsilon-tube within which no penalty is given |
Parameter | Type | Default | Description |
---|---|---|---|
max_depth | Integer | None | Maximum depth of the tree |
min_samples_split | Integer | 2 | Minimum number of samples required to split a node |
min_samples_leaf | Integer | 1 | Minimum number of samples required to be at a leaf node |
Parameter | Type | Default | Description |
---|---|---|---|
n_estimators | Integer | 100 | Number of boosting stages to perform |
learning_rate | Float | 0.1 | Shrinks the contribution of each tree |
max_depth | Integer | 3 | Maximum depth of the regression estimators |
subsample | Float | 1.0 | Fraction of samples used for fitting individual trees |